|
|
空調機組和冷卻塔大多安裝在大型建筑樓頂、屋面,比如酒店、商場、購物中心等城市綜合體。受機組結構及安裝環境的影響,設備噪音污染較廣,因此它們的降噪備受關注。
一、噪聲分析
(1) 空調器及風機盤管等設備運轉及設備振動產生的機械噪聲。
(2) 冷凍動水在冷凍水管內流動產生水流聲及水管振動產生的噪聲。
(3) 空氣在風管內流動摩擦振動產生的噪聲。
(4) 空氣從送風口噴出形成空氣動力性噪聲。
(5) 外界其他噪聲源與上述噪聲源可能產生的共振。
以垃圾焚燒飛灰(MSWIFA)為主要原料,在實驗室成功燒制了硫鋁酸鈣(calcium sulphoaluminate,CSA)水泥熟料,試驗研究了CSA水泥基材料的抗壓強度和耐久性.結果表明:CSA水泥試樣各齡期抗壓強度與試驗用對照水泥Ⅰ的抗壓強度發展規律相近,早期強度發展較快,7d后強度增長趨緩;CSA水泥基材料有較好的防收縮、抗碳化、抗滲性及抗硫酸鹽侵蝕能力;垃圾灰引入的大部分氯離子是以固定氯的形式存在于水泥熟料礦物和水化產物中的,而且隨著水化程度深入進行,部分游離氯也能被固化在新生成的水化產物中.
二、常用的消音措施
1.消聲,消聲器控制空調機組通過通風管道,傳到受聲點以及風道內氣流噪聲。同時被應用在空調機房、鍋爐房、冷凍機房等設備機房的進出風口。
2.減振,消除振源設備與傳聲介質之間的剛性連接。控制空調系統設備的噪聲,必須控制空調機組、制冷設備振動傳播的固體聲,同時避免通風管道受迫振動發聲。常用辦法是安裝減振器,增加隔振軟管,管道減振 阻尼包扎等。
3.隔聲,制冷主機、冷凍水泵、冷卻水泵等噪聲較大的制冷主機、冷卻水泵基本設置在地下室。為減小設備噪聲對地面上使用房間的影響,可對機房墻體、樓板進行隔聲處理。此外,屋面露天設備外側可用隔聲屏障 圍護,降低噪聲影響。采用COMSOL Multiphysics軟件,對不同溫濕度耦合作用下的C30,C40路面混凝土內部所產生的應力和應變進行對比分析.結果表明:不同溫濕度環境下,路面混凝土內部應力主要集中于板體棱角、各邊和板體中部;C40路面混凝土在溫濕度耦合作用下更易產生應力集中,且內應力是相同環境下C30路面混凝土的1.2倍左右;C30路面混凝土更易產生內部形變,內應變可達相同環境下C40路面混凝土的1.1~1.4倍;上述現象在溫濕度均存在大梯度循環的耦合作用下更加顯著.
空調和冷卻塔一般都安裝在樓頂上,機器發出的聲波遇到聲屏障時,它將沿著3條路徑傳播:一部分越過聲屏障頂端和兩側繞射到達受聲點,一部分穿透聲屏障到達受聲點,一部分在聲屏障壁面上產生反射。聲屏障的插入損失主要取決于聲源發出的聲波沿這3條路徑傳播的聲能分配。
聲屏障采用混合型聲屏障,頂部為吸聲單元,下部分為隔聲單元,模塊與模塊之間可以任意搭配,安裝維修方便.合理確定聲屏障的長度和高度后,可獲得10-25dB(A)的降噪量.結構安全性高,抗自然力和人為破壞力強.具有投資省,施工速度快、景觀作用明顯等優點.對不同含水率(質量分數)、不同密度麥秸磚墻的導熱系數進行了研究,并探討了不同溫度區段對麥秸磚墻導熱系數的影響.結果表明:麥秸磚墻導熱系數隨其含水率的增加而增加,隨其密度的增大而升高.不同溫度區段影響麥秸磚墻的導熱系數,相同含水率麥秸磚墻導熱系數隨溫度區段升高呈近似線性增加.麥秸磚墻含水率應保證小于13.0%,以使其具有高熱阻值,確保其隔熱性能.
空調、冷卻塔聲屏障材料宜選用降噪效果性能良好結構安全可靠、價格經濟、安裝成本低、經久耐用、使用壽命長、景觀協調、美觀大方等方面的材料。具體說明如下:
(1)隔聲量大:平均隔聲量應不小于35dB;
(2)吸聲系數高:平均吸聲系數應不小于0.84;
(3)耐侯耐久性:產品應具有耐水性、耐熱性、抗紫外線、不會因雨水溫度變化引起降低性能或品質異常.產品采用鋁合金卷板、鍍鋅卷板、玻璃棉、H鋼立柱表面鍍鋅外理防腐 年限在15年以上.
(4)美觀:可選擇多種色彩和造型進行組合,與周圍環境協調,形成亮麗風景線.
(5)經濟:裝配式施工,提高工作效率,縮短施工時間,可節省施工費及人工費.
(6)方便:與其它制品并行安裝,易維修,更新方便 采用爐底渣作輕砂,普通水泥和Ⅱ級粉煤灰作膠凝材料,膨潤土和復合外加劑作改性劑配制輕質保溫砂漿.研究了膨潤土摻量對爐底渣保溫砂漿的和易性、密度、抗壓強度和導熱系數的影響.結果表明:摻入一定量的膨潤土能明顯改善砂漿的和易性,提高砂漿的抗壓強度,而砂漿表觀密度和導熱系數變化不大.綜合考慮保溫砂漿的工作性、強度和導熱系數等方面因素,較為合適的膨潤土摻量為5.0%~7.5%(質量分數).
空調設計與噪聲控制的協作主要涉及建筑內的防噪規劃、建筑空間的分配和建筑構造等內容,從控制噪聲的觀點出發,空調設備的機房應遠離空調用房和對噪聲控制要求高的房間,這樣可以增大噪聲的自然衰減,減少空調噪聲對空調房間的影響。為降低風管的氣流噪聲,建筑設計方應盡可能預留足夠多空間給空調系統。在空調用房的布局上,對噪聲控制要求高的房間,應集中布置在建筑內區,用對噪聲控制要求低的輔助用房或辦公用房作為隔聲屏障。采用比等效導熱相等法則,把顆粒改性復合材料導熱系數求解問題轉化為含有單個顆粒立方單元體的導熱系數求解.通過在單元體中定義復合體,計算出復合體的導熱系數.在此基礎上分別采用串、并聯模型,推導出顆粒改性復合材料導熱系數計算公式.采用本方法的計算結果與文獻報道的實驗數據進行了對比,表明本方法計算結果比Luikov算法及經典的Maxwell-Eucken模型更為,與實驗數據吻合較好,從而為顆粒改性型復合材料導熱系數計算提供了一種簡單、可靠的方法.
在建筑構造上,對于產生噪聲的房間和需要安靜的房間,它們的圍護結構需要具有足夠的隔聲量,一般要做成厚重密實的結構。如果在建筑設計時間沒有處理好,則在噪聲控制時可能需要花費很高的代價才能彌補。
根據應力等效假設,以勁度模量作為澆注式瀝青混凝土疲勞損傷參量,將澆注式瀝青混凝土勁度模量損傷因子增量隨加載次數的累積過程分為3個階段,并將宏觀力學性能發生劇烈變化的第3階段定義為澆注式瀝青混凝土疲勞裂縫出現區域.通過對不同溫度下澆注式瀝青混凝土疲勞損傷試驗結果的分析,定義了澆注式瀝青混凝土疲勞破壞時的損傷因子為臨界損傷因子,分析得到了澆注式瀝青混凝土疲勞破壞時損傷因子與疲勞壽命之間的冪函數關系,建立了考慮溫度因素的疲勞損傷模型.